Animated flag images by 3DFlags.comSEMOGA SEMUA YANG SAYA UPLOAD DI BLOG INI BERGUNA BAGI TEMAN-TEMAN, BLOG INI SEBAGIAN BESAR BERISI TENTANG BAHAN-BAHAN KULIAH SAYA YANG JUGA SAYA GUNAKAN SEBAGAI ARSIP SENDIRI, JADI BANYAK YANG BUKAN TULISAN SAYA SENDIRI... MOHON DIMAKLUMI Animated flag images by 3DFlags.com

Minggu, 16 Oktober 2011

Operasi Bilangan Bulat


A.   Lambang Bilangan Bulat
Lambang bilangan bulat bentuk panjangnya merupakan hasil penjumlahan dari perkalian bilangan dengan pemangkatan bilangan 10.
Contoh:
2.345 = 2.000 + 300 + 40 + 5
= 2x103 + 3 x102 + 4 x101 + 5 x 100
2.345 = 2 ribuan + 3 ratusan + 4 puluhan + 5 satuan
a.    Menentukan Nilai Tempat Bilangan
Contoh:
1) 53.451
               Dibaca lima puluh tiga ribu empat ratus lima puluh satu.
2) 212.583
    Dibaca dua ratus dua belas ribu lima ratus delapan puluh tiga
3) 2.523.459
Dibaca dua juta lima ratus dua puluh tiga ribu empat ratus lima puluh sembilan
Himpunan Bilangan Bulat
Bilangan bulat adalah bilangan yang terdiri dari:
a Bilangan bulat positif (bilangan asli)
b Bilangan nol
c. Bilangan bulat negatif (lawan bilangan asli)
b.    Sifat Perkalian dari Urutan Bilangan Bulat
a. Jika a > b, dan c bilangan bulat positif, maka a x c > b x c
jika a < b, dan c bilangan bulat positif, maka a x c < b x c
Contoh
1) 6 > 2 dan 6 bilangan bulat positif, maka 6x6 > 2x6
2) 5 < 7 dan 3 bilangan bulat positif, maka 5x3 < 7x3

b. Jika a > b, dan c bilangan bulat negatif, maka axc < bxc
Jika a < b, dan c bilangan bulat negatif, maka axc > bxc
Contoh
1) -2 >-6 dan -3 (bilangan bulat negatif), maka -2 x (-3) < -6 x (-3)
2) -3 < 2 dan -5 (bilangan bulat negatif), maka -3 x (-5) > 2x(-5)
c. Jika a > b atau a < b, dan c adalah bilangan nol, maka axc = bxc = 0
Contoh
1) 4 > -2, maka 4 x 0 = -2 x 0 = 0
2) 3 < 5, maka 3 x 0 = 5 x 0 = 0
c.    Lawan bilangan bulat
a. Setiap bilangan bulat mempunyai tepat satu lawan yang juga   merupakan bilangan bulat
b. Dua bilangan bulat dikatakan berlawanan, apabila dijumlahkan menghasilkan nilai nol.
a + (-a) = 0
Contoh
1) Lawan dari 4 adalah -4, sebab 4 + (-4) = 0
2) Lawan dari -7 adalah 7, sebab -7 + 7 = 0
3) Lawan dari 0 adalah 0, sebab 0 + 0 = 0
B.   Operasi bilangan bulat
Penjumlahan dan pengurangan bilangan bulat
a. Menjumlahkan bilangan bulat negatif dengan bilangan positif.
Contoh
-6 + 8 = 2, digambarkan pada garis bilangan.
b. Perkalian Bilangan Bulat
Perkalian adalah penjumlahan berulang sebanyak bilangan yang dikalikan.
Contoh:
2 x 3 - 3 + 3 = 6


c. Sifat-sifat perkalian suatu bilangan
a.   Perkalian bilangan positif dengan bilangan positif, hasilnya positif.
Contoh:
1) 4 x 5 = 5 + 5 + 5 + 5 = 20
2) 7 x 8 = 56
3) 12 x 15 = 180
b.   Perkalian bilangan positif dengan bilangan negatif, hasilnya negatif.
Contoh:
1) 4 x (-5) = (-5) + (-5) +(-5) +(-5) = -20
2) 7 x (-8) = -56
3) 12 x (-15) = -180
c.   Perkalian bilangan negatif dengan bilangan positif, hasilnya negatif.
Contoh:
1) -4 x 5 = -(5 + 5 + 5 + 5) = -20.
2) -7 x 8 = -56
3) -12x 15 = -180
d.   Perkalian bilangan negatif dengan bilangan negatif, hasilnya positif.
Contoh:
1) -4 x (-5) = -[-5 + (-5) + (-5) + (-5)] = -[-20] = 20
2) -7 x (-8) = 56
3) -12 x (-15) = 180
C.   Pembagian bilangan bulat
Pembagian merupakan operasi kebalikan dari perkalian
Contoh
12 : 4 = 3, karena 4 x 3 = 12 atau 3 x 4 = 12
42 : 7 = 6, karena 7 x 6 = 42 atau 6 x 7 = 42
a. Sifat-sifat pembagian bilangan bulat
a.   Pembagian bilangan positif dengan bilangan positif, hasilnya positif
                  Contoh
                  1) 63 : 7 = 9
                  2) 143 : 11 = 13
b.   Pembagian bilangan positif dengan bilangan negatif, hasilnya negatif
      Contoh:
      1) 63 : (-9) = -7
      2) 72 : (-6) = -12
c.   Pembagian bilangan negatif dengan bilangan positif, hasilnya negatif
      Contoh:
      1) -63 : 7 = -9
      2) -120 : 10 = -12
d.   Pembagian bilangan negatif dengan bilangan negatif, hasilnya positif.
      Contoh:
       1) -72 : (-8) = 9
      2) -120 : (-12) = 10
Menggunakan Sifat Operasi Hitung Bilangan Bulat
Sifat komutatif
Sifat komutatif (pertukaran) pada penjumlahan dan perkalian.
a + b = b + a
a x b = b x a, berlaku untuk semua bilangan bulat
Contoh:
1) 2 + 4 = 4 + 2 = 6
2) 3 + 5 = 5 + 3 = 8
3) 4 x 2 = 2 x 4 = 8
4) 3 x 2 = 2 x 3 = 6
Sifat asosiatif
Sifat asosiatif (pengelompokan) pada penjumlahan dan perkalian.
(a + b) + c = a + (b+c)
(a x b) x c = a x (bxc), berlaku untuk semua bilangan bulat
Contoh:
1) (2+4) + 6 = 2 + (4+6) = 12
2) (3+6) + 7 = 3 + (6+7) = 16
3) (3x2) x 4 = 3 x (2x4) = 24
4) (3x5) x 2 = 3 x (5x2) = 30
Sifat distributif (penyebaran)
a x (b + c) = (a x b) + (a x c), yang berlaku untuk semua bilangan bulat.
Contoh
1) 4 x (5 + 2) = (4 x 5) + (4 x 2) = 28
2) 5 x (7 + 3) = (5 x 7) + (5 x 3) = 50
Operasi Campuran
Aturan dalam mengerjakan operasi campuran adalah sebagai berikut.
1 .Operasi dalam tanda kurung dikerjakan terlebih dahulu.
2. Perkalian dan pembagian adalah setara, yang ditemui terlebih dahulu dikerjakan terlebih dahulu.
3. Penjumlahan dan pengurangan adalah setara, yang ditemui terlebih dahulu dikerjakan terlebih dahulu.
4. Perkalian atau pembagian dikerjakan lebih dahulu daripada penjumlahan atau
    pengurangan.
Contoh
1. a. 20 + 30 – 12 = 50 – 12 = 38
    b. 40 – 10 - 5 = 30 – 5 = 25
    c. 40 - (10 - 5) = 40 – 5 = 35

2. a. 600 : 2O : 5 = 30 : 5 = 6
    b. 600 : (20 : 5) = 600 : 4 = 150
    c. 5 x 8 : 4 = 40 : 4 = 10

3. a. 5 x (8 + 4) = 5 x 12 = 60
    b. 5 x 8 -4 = 40 – 4 = 36
    c. 5 x (8 – 4) = 5 x 4 = 20

Tidak ada komentar:

Poskan Komentar